J. of Ramanujan Society of Mathematics and Mathematical Sciences

Vol. 10, No. 1 (2022), pp. 167-172
DOI: 10.56827/JRSMMS.2022.1001.14 ISSN (Online): 2582-5461
ISSN (Print): 2319-1023
DIGITAL TIME: A FINITE FIELD, $T_{\mathbb{F}}$

G. Manikandan and K. Srinivasa Rao*
Department of Mathematics, St. Joseph's Institute of Technology, OMR, Chennai - 600119, Tamil Nadu, INDIA
E-mail : manispark18@gmail.com
*Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai - 600113, INDIA
\& Director (Hon.), Srinivasa Ramanujan Academy of Maths Talent, 90/1, Second Main Road, Gandhi Nagar, Adyar, Chennai - 600020, INDIA
E-mail : ksrao18@gmail.com

(Received: Aug. 19, 2022 Accepted: Sep. 15, 2022 Published: Dec. 30, 2022)
Abstract: Digital time was defined KSR-PP [2] with three two-digit positions as $h_{2} h_{1}: m_{2} m_{1}: s_{2} s_{1}$. It was identified with appropriate restricted place values on the hours (H), minutes (M) and seconds (S) shown to be 86400 -element cyclic Time Group, T_{G}. Here it is shown to be a finite time field, $T_{\mathbb{F}}$. A palindromic sequence of 119 -elements and its sub-sequences are shown to be consequences of T_{F}.
Keywords and Phrases: Digital Time, Finite Field, Order of Elements, Palindromic Sequence.
2020 Mathematics Subject Classification: 05C25, 20F65.

1. Introduction and Definitions

Time flows smoothly as it is a continuous real variable. Precision in digital time measurement has been crucial in sophisticated space research and in sports, to proclaim olympic world records. Measurement of time using watches has been a part of a way of life for ages now. The digital Time Group, T_{G}, is indeed shown here to be a finite field, $T_{\mathbb{F}}$. A palindromic sequences are derived, from the first

