J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 10, No. 1 (2022), pp. 39-46

DOI: 10.56827/JRSMMS.2022.1001.4 ISSN (Online): 2582-5461

ISSN (Print): 2319-1023

COMPOSITION OF PATHWAY FRACTIONAL INTEGRAL OPERATOR ON PRODUCT OF SPECIAL FUNCTIONS

Harish Nagar and Shristi Mishra

Department of Mathematics, Chandigarh University, Mohali, INDIA

E-mail: drharishngr@gmail.com, mshristi69@gmail.com

(Received: Jul. 27, 2022 Accepted: Oct. 10, 2022 Published: Dec. 30, 2022)

Abstract: In this paper, we study the pathway fractional integral operator colluded with composition of K-Struve function and extended Mittag-Leffler function. The obtained result is expressed in terms of generalized Wright hypergeometric function.

Keywords and Phrases: Pathway fractional integral operator, generalized hypergeometric function, Struve function, K-Struve function, extended Mittag- Leffler function.

2020 Mathematics Subject Classification: 22A33, 33C65, 33C20.

1. Introduction and Definitions

In this paper, let R and C denotes the sets of real and complex numbers, respectively, and also let $R^+(0.\infty)$.

1.1. Pathway fractional integral operator

Nair developed the Pathway fractional integral operator by utilizing Mathai's pathway concept. In this paper, we aim to develop a new fractional integration formula using the generalized K-Wright function [8, 9]. Let $g(x) = L(p,q), \mu \in C, Re(\mu) > 0, p > 0$ and γ is taken as pathway parameter such that $\gamma < 1$ and the pathway fractional integral operator is defined as

$$(P_{(o+)}^{(\mu,\gamma,p)})(x) = x^{\mu} \int_0^{\frac{x}{(p(1-\gamma)}} \left[\frac{p(1-\gamma)t}{x} \right]^{\frac{\mu}{(1-\gamma)}} g(t)dt, \tag{1}$$